Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
AAPS J ; 26(3): 46, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609650

ABSTRACT

Patients with ß-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.


Subject(s)
Desoxycorticosterone Acetate , Hemochromatosis , Humans , Deferoxamine , Hyaluronic Acid , Bile Acids and Salts
3.
Sci Rep ; 13(1): 7477, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156828

ABSTRACT

Mitogen-activated protein kinase (MAPK) p38 is a central regulator of intracellular signaling, driving physiological and pathological pathways. With over 150 downstream targets, it is predicted that spatial positioning and the availability of cofactors and substrates determines kinase signaling specificity. The subcellular localization of p38 is highly dynamic to facilitate the selective activation of spatially restricted substrates. However, the spatial dynamics of atypical p38 inflammatory signaling are understudied. We utilized subcellular targeted fluorescence resonance energy transfer (FRET) p38 activity biosensors to map the spatial profile of kinase activity. Through comparative analysis of plasma membrane, cytosolic, nuclear, and endosomal compartments, we confirm a characteristic profile of nuclear bias for mitogen-activated kinase kinase 3/6 (MKK3/6) dependent p38 activation. Conversely, atypical p38 activation via thrombin-mediated protease-activated receptor 1 (PAR1) activity led to enhanced p38 activity at the endosome and cytosol, limiting nuclear p38 activity, a profile conserved for prostaglandin E2 activation of p38. Conversely, perturbation of receptor endocytosis led to spatiotemporal switching of thrombin signaling, reducing endosomal and cytosolic p38 activity and increasing nuclear activity. The data presented reveal the spatiotemporal dynamics of p38 activity and provide critical insight into how atypical p38 signaling drives differential signaling responses through spatial sequestration of kinase activity.


Subject(s)
Fluorescence Resonance Energy Transfer , MAP Kinase Signaling System , MAP Kinase Signaling System/physiology , Cytosol/metabolism , Thrombin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Endosomes/metabolism
4.
J Biol Chem ; 298(4): 101801, 2022 04.
Article in English | MEDLINE | ID: mdl-35257745

ABSTRACT

Endothelial dysfunction is a hallmark of inflammation and is mediated by inflammatory factors that signal through G protein-coupled receptors including protease-activated receptor-1 (PAR1). PAR1, a receptor for thrombin, signals via the small GTPase RhoA and myosin light chain intermediates to facilitate endothelial barrier permeability. PAR1 also induces endothelial barrier disruption through a p38 mitogen-activated protein kinase-dependent pathway, which does not integrate into the RhoA/MLC pathway; however, the PAR1-p38 signaling pathways that promote endothelial dysfunction remain poorly defined. To identify effectors of this pathway, we performed a global phosphoproteome analysis of thrombin signaling regulated by p38 in human cultured endothelial cells using multiplexed quantitative mass spectrometry. We identified 5491 unique phosphopeptides and 2317 phosphoproteins, four distinct dynamic phosphoproteome profiles of thrombin-p38 signaling, and an enrichment of biological functions associated with endothelial dysfunction, including modulators of endothelial barrier disruption and a subset of kinases predicted to regulate p38-dependent thrombin signaling. Using available antibodies to detect identified phosphosites of key p38-regulated proteins, we discovered that inhibition of p38 activity and siRNA-targeted depletion of the p38α isoform increased basal phosphorylation of extracellular signal-regulated protein kinase 1/2, resulting in amplified thrombin-stimulated extracellular signal-regulated protein kinase 1/2 phosphorylation that was dependent on PAR1. We also discovered a role for p38 in the phosphorylation of α-catenin, a component of adherens junctions, suggesting that this phosphorylation may function as an important regulatory process. Taken together, these studies define a rich array of thrombin- and p38-regulated candidate proteins that may serve important roles in endothelial dysfunction.


Subject(s)
Endothelial Cells , Thrombin , p38 Mitogen-Activated Protein Kinases , Cells, Cultured , Endothelial Cells/metabolism , Humans , MAP Kinase Signaling System , Phosphorylation , Proteomics , Receptor, PAR-1/metabolism , Thrombin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34873055

ABSTRACT

Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via ß-arrestin-2 (ß-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a ß-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates ß-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on ß-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-ß-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, ß-arr2-driven signaling pathways in caveolae.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein C/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, PAR-1/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , beta-Arrestin 2/metabolism , Anilides/pharmacology , Apoptosis/physiology , Endothelial Cells/physiology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Lactones/pharmacology , Methanol/pharmacology , Organophosphonates/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Platelet Aggregation Inhibitors/pharmacology , Protein C/genetics , Proto-Oncogene Proteins c-akt/genetics , Pyridines/pharmacology , Pyrrolidines/pharmacology , Receptor, PAR-1/genetics , Sphingosine-1-Phosphate Receptors/genetics , Sulfones/pharmacology , beta-Arrestin 2/genetics
6.
Sci Signal ; 14(698): eabc1044, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34516752

ABSTRACT

Vascular inflammation causes endothelial barrier disruption and tissue edema. Several inflammatory mediators act through G protein­coupled receptors (GPCRs), including protease-activated receptor-1 (PAR1), to elicit inflammatory responses. The activation of PAR1 by its ligand thrombin stimulates proinflammatory, p38 mitogen-activated protein kinase (MAPK) signaling that promotes endothelial barrier disruption. Through mass spectrometry phosphoproteomics, we identified heat shock protein 27 (HSP27), which exists as a large oligomer that binds to actin, as a promising candidate for the p38-mediated regulation of barrier integrity. Depletion of HSP27 by siRNA enhanced endothelial cell barrier permeability and slowed recovery after thrombin stimulation. We further showed that two effector kinases of p38 MAPK, MAPKAPK2 (MK2) and MAPKAPK3 (MK3), differentially phosphorylated HSP27 at Ser15, Ser78, and Ser82. Whereas inhibition of thrombin-stimulated p38 activation blocked HSP27 phosphorylation at all three sites, inhibition of MK2 reduced the phosphorylation of only Ser15 and Ser78. Inhibition of both MK2 and MK3 was necessary to attenuate Ser82 phosphorylation. Thrombin-stimulated p38-MK2-MK3 signaling induced HSP27 oligomer disassembly. However, a phosphorylation-deficient mutant of HSP27 exhibited defective oligomer disassembly and altered the dynamics of barrier recovery after thrombin stimulation. Moreover, blocking HSP27 oligomer reassembly with the small-molecule inhibitor J2 enhanced endothelial barrier permeability in vitro and vascular leakage in vivo in response to PAR1 activation. These studies reveal the distinct regulation of HSP27 phosphorylation and function induced by the GPCR-stimulated p38-MK2-MK3 signaling axis that controls the dynamics of endothelial barrier recovery in vitro and vascular leakage in vivo.


Subject(s)
HSP27 Heat-Shock Proteins
7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34561305

ABSTRACT

Endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) signaling promote the pathology of many human diseases. Loss-of-function variants of the UPR regulator Activating Transcription Factor 6 (ATF6) cause severe congenital vision loss diseases such as achromatopsia by unclear pathomechanisms. To investigate this, we generated retinal organoids from achromatopsia patient induced pluripotent stem cells carrying ATF6 disease variants and from gene-edited ATF6 null hESCs. We found that achromatopsia patient and ATF6 null retinal organoids failed to form cone structures concomitant with loss of cone phototransduction gene expression, while rod photoreceptors developed normally. Adaptive optics retinal imaging of achromatopsia patients carrying ATF6 variants also showed absence of cone inner/outer segment structures but preserved rod structures, mirroring the defect in cone formation observed in our retinal organoids. These results establish that ATF6 is essential for human cone development. Interestingly, we find that a selective small molecule ATF6 signaling agonist restores the transcriptional activity of some ATF6 disease-causing variants and stimulates cone growth and gene expression in patient retinal organoids carrying these variants. These findings support that pharmacologic targeting of the ATF6 pathway can promote human cone development and should be further explored for blinding retinal diseases.


Subject(s)
Activating Transcription Factor 6/genetics , Color Vision Defects/genetics , Retina/cytology , Retinal Cone Photoreceptor Cells/pathology , Activating Transcription Factor 6/agonists , Activating Transcription Factor 6/metabolism , Cone Opsins/genetics , Gene Expression , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/cytology , Organoids , Retina/diagnostic imaging , Retinal Cone Photoreceptor Cells/physiology , Vision, Ocular/genetics
8.
Int J Mol Sci ; 22(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920735

ABSTRACT

The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.


Subject(s)
Cardiovascular Diseases/metabolism , Communicable Diseases/metabolism , MAP Kinase Signaling System , Neurodegenerative Diseases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Humans
9.
Front Immunol ; 12: 794664, 2021.
Article in English | MEDLINE | ID: mdl-35058932

ABSTRACT

Post-translational modification of host and viral proteins by ubiquitin and ubiquitin-like proteins plays a key role in a host's ability to mount an effective immune response. Avian species lack a ubiquitin-like protein found in mammals and other non-avian reptiles; interferon stimulated gene product 15 (ISG15). ISG15 serves as a messenger molecule and can be conjugated to both host and viral proteins leading them to be stabilized, degraded, or sequestered. Structurally, ISG15 is comprised of a tandem ubiquitin-like domain (Ubl), which serves as the motif for post-translational modification. The 2'-5' oligoadenylate synthetase-like proteins (OASL) also encode two Ubl domains in series near its C-terminus which binds OASL to retinoic acid inducible gene-I (RIG-I). This protein-protein interaction increases the sensitivity of RIG-I and results in an enhanced production of type 1 interferons and a robust immune response. Unlike human and other mammalian OASL homologues, avian OASLs terminate their tandem Ubl domains with the same LRLRGG motif found in ubiquitin and ISG15, a motif required for their conjugation to proteins. Chickens, however, lack RIG-I, raising the question of structural and functional characteristics of chicken OASL (chOASL). By investigating chOASL, the evolutionary history of viruses with deubiquitinases can be explored and drivers of species specificity for these viruses may be uncovered. Here we show that the chOASL tandem Ubl domains shares structural characteristics with mammalian ISG15, and that chOASL can oligomerize and conjugate to itself. In addition, the ISG15-like features of avian OASLs and how they impact interactions with viral deubiquitinases and deISGylases are explored.


Subject(s)
2',5'-Oligoadenylate Synthetase/chemistry , 2',5'-Oligoadenylate Synthetase/metabolism , Immunomodulation , Protein Interaction Domains and Motifs , Ubiquitin/chemistry , Ubiquitin/metabolism , Amino Acid Sequence , Animals , Cell Line , Chickens , Humans , Mass Spectrometry , Models, Biological , Protein Binding , Protein Conformation , Protein Processing, Post-Translational , Proteolysis , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/metabolism
10.
Proc Natl Acad Sci U S A ; 117(9): 5039-5048, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071217

ABSTRACT

Thrombin, a procoagulant protease, cleaves and activates protease-activated receptor-1 (PAR1) to promote inflammatory responses and endothelial dysfunction. In contrast, activated protein C (APC), an anticoagulant protease, activates PAR1 through a distinct cleavage site and promotes anti-inflammatory responses, prosurvival, and endothelial barrier stabilization. The distinct tethered ligands formed through cleavage of PAR1 by thrombin versus APC result in unique active receptor conformations that bias PAR1 signaling. Despite progress in understanding PAR1 biased signaling, the proteins and pathways utilized by thrombin versus APC signaling to induce opposing cellular functions are largely unknown. Here, we report the global phosphoproteome induced by thrombin and APC signaling in endothelial cells with the quantification of 11,266 unique phosphopeptides using multiplexed quantitative mass spectrometry. Our results reveal unique dynamic phosphoproteome profiles of thrombin and APC signaling, an enrichment of associated biological functions, including key modulators of endothelial barrier function, regulators of gene transcription, and specific kinases predicted to mediate PAR1 biased signaling. Using small interfering RNA to deplete a subset of phosphorylated proteins not previously linked to thrombin or APC signaling, a function for afadin and adducin-1 actin binding proteins in thrombin-induced endothelial barrier disruption is unveiled. Afadin depletion resulted in enhanced thrombin-promoted barrier permeability, whereas adducin-1 depletion completely ablated thrombin-induced barrier disruption without compromising p38 signaling. However, loss of adducin-1 blocked APC-induced Akt signaling. These studies define distinct thrombin and APC dynamic signaling profiles and a rich array of proteins and biological pathways that engender PAR1 biased signaling in endothelial cells.


Subject(s)
Proteomics , Receptor, PAR-1/metabolism , Signal Transduction , Thrombin/metabolism , Calmodulin-Binding Proteins , Carrier Proteins , Endothelial Cells/metabolism , Humans , Microfilament Proteins , Phosphorylation , Protein C Inhibitor/metabolism
11.
Front Cell Dev Biol ; 7: 43, 2019.
Article in English | MEDLINE | ID: mdl-30984758

ABSTRACT

G protein-coupled receptors (GPCRs) represent the largest family of therapeutic targets for FDA approved drugs. Therefore, understanding the molecular regulation of their signaling pathways is of paramount importance. Similarly, the mitogen activated protein kinase (MAPK) p38 is a critical mediator of proinflammatory disease. Yet despite decades of intense investigation, therapeutically viable inhibitors have struggled to make it into the clinic. New studies describing the regulation and activation of a GPCR dependent atypical p38 signaling pathway represents a novel therapeutic avenue to the treatment of many proinflammatory disorders. These recent studies have defined how thrombin and ADP can induce Src dependent activation of the E3 ubiquitin ligase NEDD4-2. Src dependent phosphorylation of a 2,3-linker peptide releases NEDD4-2 auto-inhibition and triggers the induction of proinflammatory atypical p38 signaling from the endosome. Activation of the atypical p38 pathway requires the direct interaction between an adaptor protein TAB1 and p38, that bypasses the requirement for the classical MKK3/6 dependent activation of p38. Therefore, providing a mechanism to specifically block proinflammatory GPCR atypical p38 activation while leaving basic p38 activity intact. Critically, new studies demonstrated that disruption of the TAB1-p38 interface is a druggable target, that would enable the selective inhibition of proinflammatory p38 signaling and ischemic injury. Atypical p38 signaling is linked to multiple clinically relevant pathologies including inflammation, cardiotoxicity, myocardial ischemia and ischemia reperfusion injury. Therefore, GPCR induced endosomal p38 signaling represents a novel understudied branch of proinflammatory p38 signaling and an ideal potential therapeutic target that warrants further investigation.

12.
J Biol Chem ; 294(15): 5867-5878, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30760523

ABSTRACT

Endothelial dysfunction is induced by inflammatory mediators including multiple G protein-coupled receptor (GPCR) agonists. However, the GPCR signaling pathways that promote endothelial dysfunction are incompletely understood. We previously showed that thrombin promotes endothelial barrier disruption through autophosphorylation and activation of p38 mitogen-activated protein kinase (MAPK) via a non-canonical transforming growth factor-ß-activated protein kinase-1-binding protein-1 (TAB1) and TAB2-dependent pathway rather than the canonical three-tiered kinase cascade. Here, we sought to determine whether other GPCR agonists stimulate p38 MAPK activation via this non-canonical pathway in human endothelial cells derived from different vascular beds. Using primary human umbilical vein endothelial cells (HUVECs), HUVEC-derived EA.hy926 cells, and human dermal microvascular endothelial cells (HDMECs), we found that both non-canonical and canonical p38 activation pathways components are expressed in these various endothelial cell types, including TAB3, a structurally-related TAB2 homolog. Moreover, multiple GPCRs agonists, including thrombin, histamine, prostaglandin E2, and ADP, stimulated robust p38 autophosphorylation, whereas phosphorylation of the upstream MAPKs MAP kinase kinase 3 (MKK3) and MKK6, was virtually undetectable, indicating that non-canonical p38 activation may exist for other GPCRs. Indeed, in EA.hy926 cells, thrombin- and histamine-stimulated p38 activation depended on TAB1-TAB2, whereas in primary HUVECs, both TAB1-TAB2 and TAB1-TAB3 were required for p38 activation. In HDMECs, thrombin-induced p38 activation depended on TAB1-TAB3, but histamine-induced p38 activation required TAB1-TAB2. Moreover, thrombin- and histamine-stimulated interleukin-6 production required both TAB1-TAB2 and TAB1-TAB3 in HUVEC. We conclude that multiple GPCR agonists utilize non-canonical TAB1-TAB2 and TAB1-TAB3-dependent p38 activation to promote endothelial inflammatory responses.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , MAP Kinase Signaling System , p38 Mitogen-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adenosine Diphosphate/genetics , Adenosine Diphosphate/metabolism , Cell Line , Dinoprostone/genetics , Dinoprostone/metabolism , Histamine/genetics , Histamine/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/biosynthesis , Interleukin-6/genetics , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , Phosphorylation/genetics , Thrombin/genetics , Thrombin/metabolism , p38 Mitogen-Activated Protein Kinases/genetics
13.
Cell Rep ; 24(12): 3312-3323.e5, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30232011

ABSTRACT

Ubiquitination is essential for protein degradation and signaling and pivotal to many physiological processes. Ubiquitination of a subset of G-protein-coupled receptors (GPCRs) by the E3 ligase NEDD4-2 is required for p38 activation, but how GPCRs activate NEDD4-2 to promote ubiquitin-mediated signaling is not known. Here, we report that the GPCR protease-activated receptor-1 (PAR1) stimulates c-Src-mediated tyrosine phosphorylation and activation of NEDD4-2 to promote p38 signaling and endothelial barrier disruption. Using mass spectrometry, we identified a unique phosphorylated tyrosine (Y)-485 within the 2,3-linker peptide between WW domain 2 and 3 of NEDD4-2 in agonist-stimulated cells. Mutation of NEDD4-2 Y485 impaired E3 ligase activity and failed to rescue PAR1-stimulated p38 activation and endothelial barrier permeability. The purinergic P2Y1 receptor also required c-Src and NEDD4-2 tyrosine phosphorylation for p38 activation. These studies reveal a novel role for c-Src in GPCR-induced NEDD4-2 activation, which is critical for driving ubiquitin-mediated p38 inflammatory signaling.


Subject(s)
Nedd4 Ubiquitin Protein Ligases/chemistry , Receptor, PAR-1/metabolism , Signal Transduction , Capillary Permeability , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Protein Domains , Receptors, Purinergic P2Y1/metabolism , Tyrosine/genetics , Tyrosine/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism
14.
PLoS One ; 11(6): e0157587, 2016.
Article in English | MEDLINE | ID: mdl-27301021

ABSTRACT

Endocytic sorting and lysosomal degradation are integral to the regulation of G protein-coupled receptor (GPCR) function. Upon ligand binding, classical GPCRs are activated, internalized and recycled or sorted to lysosomes for degradation, a process that requires receptor ubiquitination. However, recent studies have demonstrated that numerous GPCRs are sorted to lysosomes independent of receptor ubiquitination. Here, we describe an ubiquitin-independent lysosomal sorting pathway for the purinergic GPCR P2Y1. After activation, P2Y1 sorts to lysosomes for degradation independent of direct ubiquitination that is mediated by a YPX3L motif within the second intracellular loop that serves as a binding site for the adaptor protein ALIX. Depletion of ALIX or site-directed mutation of the YPX3L motif inhibits P2Y1 sorting into the lumen of multivesicular endosomes/lysosomes and degradation. These findings confirm the function of YPX3L motifs as lysosomal targeting sequences for GPCRs and demonstrate that ALIX mediates the ubiquitin-independent degradation of certain GPCRs.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Lysosomes/metabolism , Protein Denaturation , Receptors, Purinergic P2Y1/metabolism , Ubiquitin/metabolism , ATPases Associated with Diverse Cellular Activities , Amino Acid Motifs , Animals , Calcium-Binding Proteins/analysis , Cell Cycle Proteins/analysis , Endosomal Sorting Complexes Required for Transport/analysis , HeLa Cells , Humans , Receptors, Purinergic P2Y1/analysis , Ubiquitination , Vacuolar Proton-Translocating ATPases/analysis , Vacuolar Proton-Translocating ATPases/metabolism
15.
Curr Opin Hematol ; 23(3): 274-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26845544

ABSTRACT

PURPOSE OF REVIEW: The maintenance and integrity of the endothelial barrier is essential for vascular homeostasis. Endothelial barrier dysfunction is mediated by various inflammatory factors, many of which act through G protein-coupled receptors including protease-activated receptors (PARs). PARs are expressed in multiple cell types in the vasculature and mediate cellular responses to thrombin, the key effector protease of the coagulation cascade. Thrombin activation of PAR1 induces endothelial barrier permeability through multiple pathways. Here, we discuss the mechanism by which thrombin activation of PAR1 promotes endothelial barrier breakdown and highlight recent advances that have provided new insight into molecular mechanisms that control endothelial barrier integrity. RECENT FINDINGS: Although the signal transduction pathways induced by thrombin activation of PAR1 in endothelial cells have been extensively studied, the key regulatory mechanisms remain poorly understood. Posttranslational modifications are integral to the regulation of PAR1 signaling and recent studies suggest a novel function for ubiquitination of PAR1 in regulation of endothelial barrier permeability. SUMMARY: An understanding of how endothelial barrier permeability is regulated by thrombin activation of PAR1 is important for the discovery of new drug targets that can be manipulated to control endothelial barrier permeability and prevent progression of vascular inflammation.


Subject(s)
Endothelial Cells/metabolism , Inflammation/metabolism , Receptor, PAR-1/metabolism , Signal Transduction , Ubiquitin/metabolism , Endothelial Cells/enzymology , Humans
16.
J Biol Chem ; 291(5): 2223-36, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26635365

ABSTRACT

Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that undergoes proteolytic irreversible activation by coagulant and anti-coagulant proteases. Given the irreversible activation of PAR1, signaling by the receptor is tightly regulated through desensitization and intracellular trafficking. PAR1 displays both constitutive and agonist-induced internalization. Constitutive internalization of PAR1 is important for generating an internal pool of naïve receptors that replenish the cell surface and facilitate resensitization, whereas agonist-induced internalization of PAR1 is critical for terminating G protein signaling. We showed that PAR1 constitutive internalization is mediated by the adaptor protein complex-2 (AP-2), whereas AP-2 and epsin control agonist-induced PAR1 internalization. However, the mechanisms that regulate PAR1 recycling are not known. In the present study we screened a siRNA library of 140 different membrane trafficking proteins to identify key regulators of PAR1 intracellular trafficking. In addition to known mediators of PAR1 endocytosis, we identified Rab11B as a critical regulator of PAR1 trafficking. We found that siRNA-mediated depletion of Rab11B and not Rab11A blocks PAR1 recycling, which enhanced receptor lysosomal degradation. Although Rab11A is not required for PAR1 recycling, depletion of Rab11A resulted in intracellular accumulation of PAR1 through disruption of basal lysosomal degradation of the receptor. Moreover, enhanced degradation of PAR1 observed in Rab11B-deficient cells is blocked by depletion of Rab11A and the autophagy related-5 protein, suggesting that PAR1 is shuttled to an autophagic degradation pathway in the absence of Rab11B recycling. Together these findings suggest that Rab11A and Rab11B differentially regulate intracellular trafficking of PAR1 through distinct endosomal sorting mechanisms.


Subject(s)
Endosomes/metabolism , Fatty Acid-Binding Proteins/metabolism , Gene Expression Regulation , Receptor, PAR-1/metabolism , rab GTP-Binding Proteins/metabolism , Autophagy , Biotinylation , Cell Membrane/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Library , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Lysosomes/metabolism , Microscopy, Fluorescence , Phagosomes/metabolism , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/metabolism , Thrombin/pharmacology
17.
J Cell Biol ; 210(7): 1117-31, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26391660

ABSTRACT

Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-ß-activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2-mediated ubiquitination and TAB1-TAB2. TAB1-TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption.


Subject(s)
Endosomes/metabolism , MAP Kinase Signaling System/physiology , Receptor, PAR-1/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Capillary Permeability/physiology , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/genetics , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , HeLa Cells , Humans , Mice , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases , Receptor, PAR-1/genetics , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics
18.
J Clin Invest ; 121(9): 3554-63, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21804191

ABSTRACT

Azithromycin is a potent macrolide antibiotic with poorly understood antiinflammatory properties. Long-term use of azithromycin in patients with chronic inflammatory lung diseases, such as cystic fibrosis (CF), results in improved outcomes. Paradoxically, a recent study reported that azithromycin use in patients with CF is associated with increased infection with nontuberculous mycobacteria (NTM). Here, we confirm that long-term azithromycin use by adults with CF is associated with the development of infection with NTM, particularly the multi-drug-resistant species Mycobacterium abscessus, and identify an underlying mechanism. We found that in primary human macrophages, concentrations of azithromycin achieved during therapeutic dosing blocked autophagosome clearance by preventing lysosomal acidification, thereby impairing autophagic and phagosomal degradation. As a consequence, azithromycin treatment inhibited intracellular killing of mycobacteria within macrophages and resulted in chronic infection with NTM in mice. Our findings emphasize the essential role for autophagy in the host response to infection with NTM, reveal why chronic use of azithromycin may predispose to mycobacterial disease, and highlight the dangers of inadvertent pharmacological blockade of autophagy in patients at risk of infection with drug-resistant pathogens.


Subject(s)
Anti-Bacterial Agents , Autophagy/drug effects , Azithromycin , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Mycobacterium Infections/etiology , Adult , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azithromycin/adverse effects , Azithromycin/pharmacology , Azithromycin/therapeutic use , COS Cells , Chlorocebus aethiops , Cystic Fibrosis/microbiology , Drug Resistance, Bacterial , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Lysosomes/metabolism , Macrolides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mycobacterium/drug effects , Mycobacterium/pathogenicity , Mycobacterium/physiology , Mycobacterium Infections/microbiology , Phagosomes/drug effects , Phagosomes/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sirolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...